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ABSTRACT

This paper presents parameters analysis for the estimated modal damping ratio using a 
new version of the automated enhanced frequency domain decomposition (AEFDD). The 
purpose of this study is to provide a better choice of a maximum number of points of time 
segments and modal assurance criterion (MAC) index number regarding to the variable 
level of system damping (low and high damped structure) and degree of freedom of the 
system. According current literature, frequency domain (FD) methods seem to have the 
problem with providing a correct identification of the modal damping ratio, since the correct 
estimate of modal damping is still an open problem and often leads to biased estimates. 
This technique is capable of providing consistent modal parameters estimation, particularly 

for modal frequencies and mode shapes. 
As a necessary fundamental condition, 
the algorithm has been assessed first from 
computed numerical responses according 
to random white noise, acting on different 
shear-type frame structures and corrupted 
with noise. Results indicate that reducing 
the value of natural frequencies and modal 
damping ratios of the modes under analysis 
demands longer time segments and a high 
value of the maximum number of points 
for adequate information on the decaying 
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correlation functions when computing a modal damping ratio. In addition, the results also 
prove that the MAC index does not significantly affect the results for the low damped 
system. However, the use of a high MAC index value for the high damped system 
significantly introduces large error bound and it becomes worse, particularly for the higher 
modes, as the standard deviation of percentage error increases gradually. Furthermore, the 
use of a MAC index for a high number of points of time segments significantly increases 
the standard deviation of the percentage error.

Keywords: Automated OMA, automatization, frequency domain decomposition, operational modal analysis 

INTRODUCTION

The present structural modal identification method, operational modal analysis (OMA) is 
widely and normally used within various engineering fields due to its ability to perform 
cost-effective and fast tests that depend solely on structural response signals generated 
by ambient excitations without affecting its operating conditions (Rainieri & Fabbrocino, 
2015). This means that OMA techniques have major advantages compared to classical 
experimental modal analysis (EMA), which requires input excitations for structural modal 
identification (Mironov et al., 2015; Zhang et al., 2005). In the literature, the classical 
frequency domain decomposition (FDD) was originally proposed by Brincker et al. (2001a) 
and this technique is based on the singular value decomposition (SVD) of the power spectral 
density (PSD) matrix of the response signals (Brincker et al., 2001b; Gade et al., 2005). 
With simple execution and user-friendly characteristics, this technique is also capable of 
providing consistent modal parameters estimation, particularly for modal frequencies and 
mode shapes; however, modal damping value was not clarified in their work. Later, the 
second generation of FDD, known as enhanced frequency domain decomposition (EFDD), 
was introduced to enhance the accuracy of modal frequencies and explain how to estimate 
modal damping ratios (Brincker et al., 2001a). The third generation of FDD, frequency-
spatial domain decomposition (FSDD), was proposed in the following years to overcome 
some problems in EFDD algorithms (Brincker & Zhang, 2009; Wang et al., 2005; Zhang 
et al., 2010). According to the existing literature, frequency domain (FD) methods are 
capable of detecting modal frequencies and mode shapes in terms of closely spaced modes 
or even repeated modes, since SVD can isolate the signal from noise (Zhang & Tamura, 
2003). However, frequency domain (FD) methods seem to have the problem of providing 
a correct identification of the modal damping ratio, since the actual estimation of modal 
damping is still an open problem and frequently leads to biased estimates, although natural 
frequencies and mode shapes can be estimated confidently (Rainieri & Fabbrocino, 2014; 
Rainieri & Fabbrocino, 2015).
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Most of the researchers have tried to improve modal damping estimation by introducing 
a variety of techniques for modal damping estimation in FDD-type procedures such as 
logarithmic decrement (LogDec) method (Brincker et al., 2001a; Gade et al., 2005), 
Hilbert transform (HT) (Zhang & Tamura, 2003), natural excitation techniques (NExt) ie 
cross-covariance function, Ibrahim time domain, and Polyreference (Bajrić et al., 2015a) 
as well as the optimal wavelet (Tarinejad & Damadipour, 2014). Furthermore, a new 
approach involving hybrids or combinations of two methods together is also introduced 
to improve modal damping estimation such as Enhanced FDD Algorithm in-operation 
modal appropriation (EFDD-INOPMA) (Ghalishooyan et al., 2019), Frequency Domain 
Decomposition-Natural Excitation Technique (FDD-NExT) (Frans & Arfiadi, 2019), 
Frequency Domain State Space-Based Mode Decomposition Framework (Hwang et al., 
2019) and Frequency Domain Stochastic Subspace Identification (Chou & Chang, 2020). 
However, this issue is still considered as an open problem, even though some researchers 
have also tried to tackle the signal processing issue by making improvements using their 
proposed method since, the signal processing also denoted as the contributing factor for 
estimation errors comprising estimates of correlation function (CF) and the spectral density 
(SD) (Bajric et al., 2015b). After throughout critical reviews and pilot tests, there is another 
factor that contributes to this error which is caused by parameter extraction, particularly 
in term of proper selection of the correct time window, extrema picking of single degree 
of freedom (SDOF) auto-correlation function and modal assurance criterion (MAC) index 
selection which turn out to be the most challenging part of the algorithm. Time window, 
extrema picking of SDOF auto-correlation function and MAC index selection need to be 
carefully chosen, otherwise it will lead to random and bias errors. Therefore, particular 
attention is needed for proper selection of the correct time window, MAC index selection 
and extrema picking of a single degree of freedom (SDOF) auto-correlation function. 
Currently, some researchers have tried to address this problem by introducing iterative 
loop optimization in the selection of the correct time window, extrema picking of single 
degree of freedom (SDOF) auto-correlation function and MAC index selection. The refined 
FDD is a new version of EFDD. However, they can only improve the estimation of modal 
damping ratios up to 75% and 95% for the natural frequencies but ineffective for a very 
high noise and only reported for the high damped system (Brincker et al., 2001b; Pioldi et 
al., 2016; Pioldi et al., 2017; Pioldi & Rizzi, 2015; Pioldi & Rizzi, 2017; Pioldi & Rizzi, 
2018; Pioldi et al., 2014).

The proposed method which is an automated EFDD method tried to improvise the 
recent method, Refined FDD by introducing a new approach of iterative loop optimization 
in the selection of the correct time window and extrema picking of single degree of freedom 
(SDOF) auto-correlation function. Meanwhile for MAC index selection, further analysis is 
needed to identify the appropriate range of MAC index value for a different level of system 
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damping (low and high damped structure) because the study on refined FDD is limited to 
the high damped structure only. 

Therefore, the purpose of this study is to evaluate the performance of the automated 
version of the EFDD method by performing parameter analysis for the estimated modal 
damping ratio to provide a better choice of a maximum number of points of time segments 
and modal assurance criterion (MAC) index number regarding the variable level of system 
damping (low and high damped structure) and degree of freedom of the system.

MATERIALS AND METHODS
All the frequency domain methods in OMA share similar characteristics in terms of the 
spectral density (SD) function assessment from the output responses, but each of them 
has a different way of extracting structural modal parameters. Further information on the 
automated EFDD method algorithm is discussed in this section.

The overall schematic illustration of the automated EFDD method procedure is shown 
in Figure 1. At first, each method in OMA including the FD method is required to go through 
signal processing before the modal identification process takes place. This is because all 
the modal information generally is suppressed in the mess made by the randomness of 
the measured signals. Thus, signal processing is used to provide a clearer picture of the 
physical problem being dealt with. Signal processing consists of correlation functions 
(CF) and spectral densities (SD) function. The CF matrix was estimated using the direct 
method, as given by Equation 1. 

                                 			          (1) 
Where the measured responses are arranged as a column in data series, N is the total 

number of data points in the time series, k corresponds to the time lag and 
corresponds to , T is the total length of the time series. Before estimating 

SD, the fast Fourier transform (FFT) algorithm requires time windows to reduce leakage 
by forcing the endpoints of each signal sample data to zero. In this study, the flat-triangular 
window with α = 0.5 was chosen. Next, the singular value decomposition (SVD) is applied 
to decompose the output SD into auto SD that represents an SDOF system. The singular 
value data that are identified around a resonance peak by using modal assurance criterion 
(MAC) filtering, which is also known as spectral bell identification (Gade et al., 2005; 
Zhang & Tamura, 2003), are transfered back to the time domain (TD) using the inverse 
FFT (Gade et al., 2005; Zhang & Tamura, 2003). 

Considering two different vectors and , that are to be considered as two different 
estimates of the same experimental mode shape vector (Bricker & Venture, 2015), we 
can calculate the correlation between the two vectors according to the MAC normally 
formulated as in Equation 2:

                    			         (2)
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If a linear relationship exists (i.e., the vectors move the same way) between the two 
complex vectors, the MAC value will be near to one. If they are linearly independent, the 
MAC value will be small (near zero). 

Then, all extrema of the free decay that within an appropriate time window were used 
to implement the subsequent linear regression operations for assessing the logarithmic 
decrement (LogDec), 𝛿 as characterized in Equation 3 and Equation 4 below:

                                               					           (3)
                       					            (4) 

where k is an integer counter of the kth extreme of the auto-correlation function,
k = 1,2,3, ..., while r0 and rk are the initial and the kth extreme value of the auto-correlation 
function, respectively. Then, modal damping ratio can be obtained in Equation 5.

                                                				           (5)

Meanwhile, the damped natural frequency, ωd was estimated by linear regression on 
the zero-crossing times of the equivalent SDOF correlation function. Then, the undamped 

Figure 1. Schematic illustration of FDD procedure
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natural frequency, ωn was computed by using the following Equation 6:

                                                  				          (6)

Further information on all alternative FD methods can be found in (Jacobsen et al., 
2008; Pioldi et al., 2016; Rodrigues et al., 2004).

Validation with Numerical Simulations 

As a fundamentally necessary condition, the algorithm had been assessed first from 
computed numerical responses according to random white noise, acting on different ideal 
shear-type frame structures. The proposed algorithms were validated via simulated data 
from a series of multi-storey shear-type models consisting of two, three and six degrees of 
freedom (DOF) as illustrated in Figure 2. All these structural features with different DOFs 
are examined first (Zanchi, 2011; Pioldi, 2012; Pioldi, 2013). 

The characteristics of the simulated multi-storey shear-type models which present 
well-separated modes are provided in Figure 3 by the stiffness (K), mass (M) and damping 
(C) matrices. 

Figure 2. Two-, three and six -storey frame models.

The well-separated modes and different DOFs were used in this study to discover the 
efficiency of the proposed approach for the diversity of features and type of structure. The 
system matrices were defined with to achieve modal parameters with values of the same 
order of magnitude as the ones generally found in present civil engineering structures. Mass 
and stiffness matrices were set fixed for every frame as reported below. Damping matrices 
have been assumed to be diagonal in modal coordinates and represented by different modal 
damping ratios in the numerical tests. The damping of the structure is viscous (damping 
forces proportional to velocity) and proportional Rayleigh damping, the prescribed modal 
damping ratios for multi-storey shear-type models are set to ζk=ζj=1%, 3% and 5% of 
critical damping which consists of low and high values of damping in a structure. In the 
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literature, only lightly damped structures that contain modal damping ratios below 2% are 
considered for analysis (Brewick & Smyth, 2013; Brincker et al., 2001a; Brincker et al., 
2001b; Gade et al., 2005; Magalhães et al., 2010; Zhang & Tamura, 2003). Input is taken 
as a stationary broadband ambient excitation with normally distributed random numbers 
assuming independent inputs for all DOF of the models. It has a constant PSD which can 
cover a wide range of frequencies and is adequate to excite all the structural modes. The 
random input excitation, which is also known as zero-mean Gaussian white noise, takes 
the assumption of the excitation system to be linear and time-invariant. The response of 
the system was simulated using Newmark’s method with constant average acceleration 
(i.e. 𝛾=12 and 𝛽=14) (Chopra, 2001). The adopted parameters in the analysis are shown 
in Table 1.

The simulated outputs, which are time series with the accelerations of all the DOFs 
of the models, are corrupted with noise that mimics the influence of the sensors and 
measuring chain noise. This was simulated by normally distributed random numbers with 
a standard deviation equal to 10% of the standard deviation of the simulated outputs [this 
percentage of noise is quite conservative in the case of well-conducted ambient vibration 
tests (Magalhães, 2010)].In this numerical simulation, the eigenvalue problem analysis was 

Figure 3. Dynamic system models: the main features of ideal shear-type frames.

Parameters Two-storey
frame

Three-storey 
frame

Six-storey
frame

Length of time series, t(s) 400 600 1000
Sampling frequency, fs(Hz) 200  200 200
Adopted frequency resolution, 
∆f f(Hz)

0.0025 0.00167 0.001

Table 1
The adopted parameters for the multi-storey frame in the processing
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used to validate the effectiveness of the proposed approach. By taking the values of the 
stiffness K, mass M, and damping C, the modal parameters (modal damping ratio, natural 
frequency and mode shape) can be estimated. 

The automated version of the EFDD method was tested on multi-storey shear-type 
models which consisted of two, three and six DOF and different levels of damping (1%, 
3% and 5% of critical damping, which consisted of low and high damped systems) with 
the appropriate variation of the MAC index ranging from 0.70 to 0.99 based on a literature 
review (Pioldi et al., 2016) and using ten alternative time segment lengths that led to spectra 
with different frequency resolution. Table 2 characterises 70 scenarios (named from 1a to 
10g) that involved varying the maximum number of points considered in the time segments 
from 1024 to 10240 and using a variation of the MAC index that ranges from 0.70 to 0.99. 
The 70 scenarios are the percentage deviation (error) of estimate modal damping ratios.

The use of multi-storey shear-type models for this analysis requires a large number of 
simulations and datasets and forced the use of an automated procedure, which is presented 
in the last section. The automated version of the EFDD method is a robust procedure and 
adequate for this particular application.

Table 2
Scenarios for the application of the FDD method

Maximum number 
of points in the time 
segments

MAC Index

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

0.
99

1024*1 1a 1b 1c 1d 1e 1f 1g
1024*2 2a 2b 2c 2d 2e 2f 2g
1024*3 3a 3b 3c 3d 3e 3f 3g
1024*4 4a 4b 4c 4d 4e 4f 4g
1024*5 5a 5b 5c 5d 5e 5f 5g
1024*6 6a 6b 6c 6d 6e 6f 6g
1024*7 7a 7b 7c 7d 7e 7f 7g
1024*8 8a 8b 8c 8d 8e 8f 8g
1024*9 9a 9b 9c 9d 9e 9f 9g
1024*10 10a 10b 10c 10d 10e 10f 10g
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RESULTS AND DISCUSSION

Low Level of Damping (1%)

Percentage deviations (errors) of modal damping ratio for the low damped of two, three 
and six-storey frame (1%) are shown in Figures 4, 5 and 6.

Figure 4. Percentage deviation (error) of modal damping ratio for the low damped two-storey frame (1%):
(a) the first mode; (b) the second mode.

(a)

(b)
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(a)

(b)

(c)

Figure 5. Percentage deviation (error) of modal damping ratio for the low damped three-storey frame (1%): 
(a) the first mode; (b) the second mode; (c) the third mode.
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(a)

(b)

(c)

Figure 6. Percentage deviation (error) of modal damping ratio for the low damped six-storey frame (1%):
(a) the first mode; (b) second mode; (c) the third mode
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(d)

(e)

(f)
Figure 6. Percentage deviation (error) of modal damping ratio for the low damped six-storey frame (1%): 
(d) the fourth mode; (e) the fifth mode; (f) the sixth mode.
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High Level of Damping (3%)

Percentage deviations (errors) of modal damping ratio for the high damped of two, three 
and six-storey frame (3%) are shown in Figures 7, 8 and 9.

(a)

(b)

Figure 7. Percentage deviation (error) of modal damping ratio for the high damped two-storey frame (3%): 
(a) the first mode; (b) the second mode.
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Figure 8. Percentage deviation (error) of modal damping ratio for the high damped three-storey frame (3%): 
(a) the first mode; (b) the second mode; (c) the third mode.

(a)

(b)

(c)



Parameters Study That Effect the Estimated Modal Parameters

811Pertanika J. Sci. & Technol. 28 (3): 797 - 828 (2020)

(a)

(b)

(c)
Figure 9. Percentage deviation (error) of modal damping ratio for the high damped six-storey frame (3%): 
(a) the first mode; (b) second mode; (c) the third mode
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Figure 9. Percentage deviation (error) of modal damping ratio for the high damped six-storey frame (3%):
 (d) the fourth mode; (e) the fifth mode; (f) the sixth mode.

(d)

(e)

(f)
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High Level of Damping (5%)

Percentage deviations (errors) of modal damping ratio for the high damped of two, three 
and six-storey frame (5%) are shown in Figures 10, 11 and 12.

This analysis reveals that a maximum number of points of the time segment or 
frequency resolution play a major role in presenting high bias results (sometimes above 
100%) in cases when this parameter is not well chosen. The frequency resolution and the 
correct choice of the number of points of the time segments are both interrelated; increasing 
the number of points means increasing the frequency resolution. The biased estimate of 
the modal damping ratio is influenced by estimated auto-correlation. The correct selection 
of a maximum number of time segments for estimating auto-correlation should require 
some points after the disappearance of the decay to ensure that the length of the estimated 

(b)

(a)

Figure 10. Percentage deviation (error) of modal damping ratio for the high damped two-storey frame (5%): 
(a) the first mode; (b) the second mode.
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(b)

(c)
Figure 11. Percentage deviation (error) of modal damping ratio for the high damped three-storey frame (5%): 
(a) the first mode; (b) the second mode; (c) the third mode.

(a)
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(b)

(a)

(c)

Figure 12. Percentage deviation (error) of modal damping ratio for the high damped six-storey frame (5%): 
(a) the first mode; (b) second mode; (c) the third mode
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(d)

(e)

(f)

Figure 12. Percentage deviation (error) of modal damping ratio for the high damped six-storey frame (5%): 
(d) the fourth mode; (e) the fifth mode; (f) the sixth mode.
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correlation is adequate and able to successfully capture all full modal decay that contains 
an adequate amount of information about the decaying CF, otherwise the likely presence 
of noise and errors in the results for the modal damping estimate will be caused by the 
spectral estimation. Since the identification of the modal damping ratio using logarithmic 
decrement is fully reliant on modal decay, the accurate maximum number of time segment 
lengths becomes a crucial step for accurate estimation of the modal parameter. The results 
of this analysis for the percentage deviation of the estimated modal damping ratio are 
illustrated in Figures 4 to 12. 

Meanwhile, results of theoretical modal decay of the first mode and limits of the auto-
correlation functions calculated using the time segment lengths defined in Table 2 for two, 
three and six-storey frame are shown in Figures 13, 14 and 15.

This is proven with the scheme presented in Figure 13, 14 and 15, which display the 
theoretical modal decay of the first mode and the limits of the auto-correlation functions 
calculated using the time segment lengths defined in Table 2 for multi-storey shear-type 
models and a variable level of damping (1%, 3% and 5% of critical damping, which consists 
of low and high damped systems). The red vertical lines that are clearly observed before 
the end of the decay, consequently, lead to the bias estimates. The effect of the introduced 
errors can also be observed by comparing, for instance, the auto-correlation estimated using 
time segments with 2048 points (Figure 16 with its theoretical counterpart Figure 14a): 
the estimated decay vanishes just at the end of the estimated segment, approximately at 5 
seconds or 6 seconds, but the estimated correlation does not contain some points after the 

Maximum number 
of points in the time 
segments

MAC Index

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

0.
99

1024*1 1a 1b 1c 1d 1e 1f 1g
1024*2 2a 2b 2c 2d 2e 2f 2g
1024*3 3a 3b 3c 3d 3e 3f 3g
1024*4 4a 4b 4c 4d 4e 4f 4g
1024*5 5a 5b 5c 5d 5e 5f 5g
1024*6 6a 6b 6c 6d 6e 6f 6g
1024*7 7a 7b 7c 7d 7e 7f 7g
1024*8 8a 8b 8c 8d 8e 8f 8g
1024*9 9a 9b 9c 9d 9e 9f 9g
1024*10 10a 10b 10c 10d 10e 10f 10g

Table 2
Scenarios for the application of the FDD method
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Figure 13. Theoretical modal decay of the first mode and limits of the auto-correlation functions calculated 
using the time segment lengths defined in Table 2 for two-storey frame: (a) low damped (1%); (b) high damped 
(3%); (c) high damped (5%) system.
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Figure 14. Theoretical modal decay of the first mode and limits of the auto-correlation functions calculated using 
the time segment lengths defined in Table 2 for three-storey frame: (a) low damped (1%); (b) high damped (3%)
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Figure 14. Theoretical modal decay of the first mode and limits of the auto-correlation functions calculated 
using the time segment lengths defined in Table 2 for three-storey frame: (c) high damped (5%) system
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Figure 15. Theoretical modal decay of the first mode and limits of the auto-correlation functions calculated 
using the time segment lengths defined in Table 2 for six-storey frame: (a) low damped (1%); (b) high damped 
(3%); (c) high damped (5%) system.
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disappearance of the decay. This indicates that the length of the estimated correlation is 
not long enough to characterise the full decay. 

In the case of the various levels of damping of the system, the appropriate maximum 
number of points of the time segment become a crucial decision and need to be defined 
properly, particularly for low damped systems where the response will decay at a slower 
rate and thus requiring the high number of  points of time segments when compared to 
a high damped structure. Table 3 provides the appropriate adopted number of points of 
time segments for the first mode of the multi-storey frame based on the results provided in 
Figures 4 to 12. The first mode becomes a key point to determine the maximum number of 
points of the time segments. This has proven that the accurate selection of the time segment 
length does not rely solely on modal damping ratios; instead, natural frequencies also need 
to be taken into account because each first mode of multi-storey shear-type models has 
a different value of natural frequencies. This indicates that reducing the value of natural 
frequencies and modal damping ratios of the modes under analysis demands longer time 
segments and a high value of the maximum number of points for an adequate amount of 
information of the decaying CF when estimating modal damping (examples are shown in 
Figure 6a and Figure 15a for the first the mode of the six-storey shear model with 1% of 
critical damping). Furthermore, if the maximum number of points of the time segment is 
too high, it will cause bias errors. Thus, from this analysis, the maximum number of points 
of the time segment suitable to be used for both low and high damped systems (1%–5% 
of critical damping and from frequency 1.5 Hz and above) for multi-storey shear-type 
models is 5120 (1024*5) or more, as outlined in Table 3. Instead of an increasing number 
of points of time segments, another way to enhance the frequency resolution is through 
interpolation of the spectrum by zero-padding the time window to increase the length of 
recordings (Ewins, 2000).
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Figure 16. Modal decay estimated using time segments with 2048 points for the first mode of the three-storey 
frame (1% of critical damping)
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In addition, the supplementary set of analysis involving the parameters of the MAC 
index with different levels of system damping and the number of points of the time segments 
revealed that the results yield small variations of the percentage deviation of the modal 
damping ratio (around 1.23% standard deviation) for multi-storey shear-type models with 
1% (low damped system) as shown in Figures 4, 5 and 6. This proves that the MAC index 
does not significantly affect the results of the low damped system. The use of a high MAC 
index value for the high damped system (5% of critical damping) will significantly introduce 
large error bound about 8.71% standard deviation of percentage error. It became worse, 
particularly for the higher modes, as the standard deviation of percentage error increased 
gradually. Furthermore, the use of a MAC index for a high number of points of time 
segments significantly increases the standard deviation of the percentage error. The plots 
in Figures 7 to 12 also revealed that the use of a high number of points of time segments 
as well as a high MAC index lead to an increased percentage deviation of estimate modal 
damping ratio, which can be up to 30% of standard deviation when the level of damping 
is higher. The selection of the auto-spectra based on the MAC index using values higher 
than 0.8 is preferred by most researchers (Magalhães, 2010; Magalhães et al., 2010) but it 
is unsuitable, particularly for the higher modes of the high damped system. 

Therefore, this analysis also provides the appropriate range for the MAC index for 
each mode with different levels of damping according to the trend, as illustrated in Figure 
4 to 12. The results of the analysis are provided in Tables 4, 5 and 6 with respect to two-, 
three- and six-storey frames. Table 7 comprises all the appropriate range of MAC indexes 
with different levels of damping from multi-storey models according to each mode, based 
on the results in Figures 4 to 12. This Table 7 clearly shows that the higher modes require 
lower MAC index values and vice versa for lower modes.

Table 3 
The appropriate adopted number of points of time segments for the multi-storey frame

Storey frame Natural 
frequency [Hz]

Modal damping 
ratio [%]

Appropriate no. of point of time 
segments

Two 4.211 1 ≥ 1024*3 @ (3072) 
3 ≥ 1024*1 @ (1024) 
5 ≥ 1024*1 @ (1024) 

Three 2.657  1 ≥ 1024*4 @ (4096) 
3 ≥ 1024*2 @ (2048) 
5 ≥ 1024*1 @ (1024) 

Six 1.666 1 ≥ 1024*5 @ (5120) 
3 ≥ 1024*3 @ (3072) 
5 ≥ 1024*2 @ (2048) 
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Mode Natural frequency 
[Hz]

Modal damping 
ratio [%]

Appropriate MAC 
index

First 4.211 1 0.70–0.90
3 0.80–0.99
5 0.70–0.95

Second 10.911 1 0.70–0.95
3 0.70–0.90
5 0.70–0.85

Table 4 
The appropriate adopted range of MAC index for the two-storey frame

Table 5 
The appropriate adopted range of MAC index for the three-storey frame

Mode Natural frequency 
[Hz]

Modal damping 
ratio [%]

Appropriate MAC 
index

First 2.657 1 0.75–0.99
3 0.70–0.99
5 0.85–0.99

Second 7.445  1 0.80–0.99
3 0.85–0.95
5 0.70–0.85

Third 10.759 1 0.70–0.90
3 0.70–0.90
5 0.70–0.75

Table 6 
The appropriate adopted range of MAC index for the six-storey frame

Mode Natural frequency 
[Hz]

Modal damping 
ratio [%]

Appropriate MAC 
index

First 1.666 1 0.70–0.90
3 0.70–0.90
5 0.70–0.95

Second 4.672  1 0.70–0.99
3 0.70–0.95
5 0.70–0.80

Third 7.448 1 0.70–0.95
3 0.70–0.95
5 0.70–0.95
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Table 6 (Continued)

Mode Natural frequency 
[Hz]

Modal damping 
ratio [%]

Appropriate MAC 
index

Fourth 9.789 1 0.70–0.99
3 0.70–0.90
5 0.70–0.85

Fifth 11.587 1 0.70–0.99
3 0.70–0.95
5 0.70–0.75

Sixth 13.082 1 0.70–0.95
3 0.70–0.75
5 0.70–0.85

Table 7 
The appropriate adopted range of MAC index for each mode

Mode Modal damping 
ratio [%]

Appropriate Range of 
MAC index

Appropriate MAC 
index

First 1 0.75–0.90
3 0.80–0.90 0.85–0.90
5 0.85–0.95

Second 1 0.80–0.95
3 0.85–0.90 0.85–0.90
5 0.70–0.80

Third 1 0.70–0.90
3 0.70–0.90 0.70–0.75
5 0.70–0.75

Fourth 1 0.70–0.99
3 0.70–0.90 0.70–0.85
5 0.70–0.85

Fifth 1 0.70–0.99
3 0.70–0.95 0.70–0.75
5 0.70–0.75

Sixth 1 0.70–0.95
3 0.70–0.75 0.70–0.75
5 0.70–0.85
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CONCLUSIONS

In this study, the results of the parameters that have a bigger effect on the performance 
of the automated EFDD method are presented involving the maximum number of points 
considered in the time segments used for the spectra calculation, selection of MAC 
index and the variable level of damping of the system. The results indicate that reducing 
the value of natural frequencies and modal damping ratios of the modes under analysis 
demands longer time segments and a high value of the maximum number of points for 
adequate information of the decaying CF when estimating modal damping. In addition, the 
supplementary set of analyses involving the parameters of the MAC index with different 
levels of system damping and number of points of the time segments revealed that the 
results proved that the MAC index did not significantly affect the results for the low damped 
system. However, the use of a high MAC index value for the high damped system (5% of 
critical damping) significantly introduced large error bound. It became worse, particularly 
for the higher modes, as the standard deviation of percentage error increased gradually. 
Furthermore, the use of a MAC index for a high number of points of time segments 
significantly increased the standard deviation of the percentage error. Therefore, a careful 
treatment of a maximum number of points of time segments and MAC index numbers 
regarding the variable level of system damping and degree of freedom of the system are 
an important element in achieving an accurate estimate of modal parameters. Therefore, 
the attempted simulations have confirmed the efficacy of the implemented analysis. This 
research serves as a base for future studies in enhancing the performance of the automated 
EFDD method as a modal information engine in structural health monitoring (SHM) 
systems by providing a better choice of a maximum number of points of time segments 
and MAC index number regarding the variable level of system damping and degree of 
freedom of the system.
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APPENDIX

Nomenclature list

FDD Frequency Domain Decomposition
SDOF Single Degree of Freedom 
MAC Modal Assurance Criterion
SSI Stochastic Subspace-Based Algorithms 
OMA Operational Modal Analysis 
EMA Experimental Modal Analysis
SVD Singular Value Decomposition 
PSD Power Spectrum Density 
LogDec Logarithmic Decrement 
HT Hilbert Transform
NExt Natural Excitation Techniques 
CF Correlation Function
SD Spectral Density
SHM Structural Health Monitoring 
RUL Remaining Useful Life 


